If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-15y-54=0
a = 10; b = -15; c = -54;
Δ = b2-4ac
Δ = -152-4·10·(-54)
Δ = 2385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2385}=\sqrt{9*265}=\sqrt{9}*\sqrt{265}=3\sqrt{265}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{265}}{2*10}=\frac{15-3\sqrt{265}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{265}}{2*10}=\frac{15+3\sqrt{265}}{20} $
| 3(x2-2)=66 | | 3x-5/5-x-3/2=2(x+5) | | 6a=1=3a+10 | | 0.3x-0.25x=-1.375 | | (70y2–3y–54=0) | | 3a+4(a-2)=12-(8-3a) | | 9y+15=820 | | (2x+5)(2x-3)=0 | | 9a+6+2(3a+5)=0 | | 6y-2=8+2y | | X^2+8x16=0 | | 5x-7/3x-8=-6/7 | | 5t-3=-5 | | 4x+20=2x+25 | | 3y+29y=-56 | | 11w=8580w= | | 5x^2=10x=4 | | 5+2(x-5)^4=167 | | 12x+21-9x+21=28x2-175x+15 | | 5x2+2x=0 | | 3x=28x2-175x+15 | | 2/21x+8=x+6 | | s²+4s+30=0 | | 3/4x+2=1/4x−3 | | (s+4)²=-2s | | (x+9)^2=x+11 | | -x^2-7=56 | | 4(x-3)^2=1024 | | 2^(x+9)=16^x | | 3+1=x/2 | | 2(x*5)*x=4x-7 | | x/10=−1 |